亚洲中文精品a∨在线,国产在线精品在线精品,国产亚洲欧美一区,欧美肉肉丝视频一区二区

您當(dāng)前位置: 唯學(xué)網(wǎng) » 統(tǒng)招研究生 » 輔導(dǎo)專題

2016年考研數(shù)學(xué)線性代數(shù)的四大考點

來源:唯學(xué)網(wǎng)•教育培訓(xùn)(slhrvoh.cn)  【唯學(xué)網(wǎng) • 中國教育電子商務(wù)平臺】 加入收藏

線性代數(shù)考研數(shù)學(xué)的必考知識,在考研數(shù)學(xué)一、二、三中都會考到,且比例較大,占總分值的22%,約34分,以2個選擇題、1個填空題、2個解答題的形式出現(xiàn),希望考生們著重復(fù)習(xí)。為了幫助大家備考,唯學(xué)網(wǎng)小編整理了線性代數(shù)四大考點,以供大家參考。

線性代數(shù)的四大考點,有關(guān)矩陣的秩、特征值與特征向量、線性方程組求解和二次型標(biāo)準(zhǔn)化與正定判斷這四點。

考點一:矩陣的秩

矩陣?yán)碚撌蔷性代數(shù)的重點內(nèi)容,熟悉掌握了矩陣的相關(guān)性質(zhì)與內(nèi)容,利用其來解決實際應(yīng)用問題就變得簡單易行。正因為矩陣?yán)碚撛谡麄線性代數(shù)中的重要作用,使它變?yōu)榭荚嚳疾榈闹攸c。矩陣由那么多元素組成,每一個元素都在扮演不同的角色,其中的核心或主角是它的秩!

通過幾十年考研考試命題,命題老師對題目的形式在不斷地完善,這也要求考生深入理解概念,靈活處理理論之間的關(guān)系,能變通地解答題目。例如對矩陣秩的理解,對矩陣的秩與向量組的秩之間的關(guān)系的理解,對矩陣等價與向量組等價之間區(qū)別的理解,對矩陣的秩與方程組的解之間關(guān)系的掌握,對含參數(shù)的矩陣的處理以及反問題的解決能力等,都需要在對概念理解的基礎(chǔ)上,聯(lián)系地看問題,及時總結(jié)結(jié)論。

考點二矩陣的特征值與特征向量

矩陣的特征值與特征向量在將矩陣對角化過程中起著決定作用,也是將二次型標(biāo)準(zhǔn)化、規(guī)范化的便捷方式,故特征值與特征向量也是考查重點。對于特征值與特征向量,須理清其相互關(guān)系,也須能根據(jù)一些矩陣的特殊性求得其特征值與特征向量(例如根據(jù)矩陣各行元素之和為3能夠判斷3是其一個特征值,元素均為1的列向量是其對應(yīng)的特征向量),會處理含參數(shù)的情況。

考點三:線性方程組求解

對線性方程組的求解總是通過矩陣來處理,含參數(shù)的方程組是考查的重點,對方程組解的結(jié)構(gòu)及有解的條件須熟悉。例如2010年第20題(數(shù)學(xué)二為22題),已經(jīng)三元非齊次線性方程組存在2個不同的解,求其中的參數(shù)并求方程組的通解。此題的關(guān)鍵是確定參數(shù)!而所有信息完全隱含在"AX=b存在2個不同的解"這句話中。由此可以得到齊次方程組有非0解,系數(shù)矩陣降秩,行列式為0,可求得矩陣中的參數(shù);非齊次方程組有解故系數(shù)矩陣與增廣矩陣同秩可確定唯一參數(shù)及b中的參數(shù)。至于確定參數(shù)后再求解非齊次方程組就變得非常簡單了!

考點四二次型標(biāo)準(zhǔn)化與正定判斷

二次型的標(biāo)準(zhǔn)化與矩陣對角化緊密相連,即與矩陣的特征值與特征向量緊密聯(lián)系。這里需要掌握一些處理含參數(shù)矩陣的方法以便運算中節(jié)省時間!正定二次型有很優(yōu)秀的性質(zhì),但畢竟這是一類特殊矩陣,判斷一個矩陣是否屬于這個特殊類,可以使用正定矩陣的幾個充要條件,例如二次型矩陣的特征值是否全大于0,順序主子式是否均大于0等,但前者更常用一些。

以上為2016年考研數(shù)學(xué)線性代數(shù)的重要考點,希望對考生們能有所幫助,若想了解更多研究生相關(guān)信息,如考研改革、考研考試等,請關(guān)注唯學(xué)網(wǎng)考研欄目,小編會第一時間為你更新最新資訊。

0% (0)
0% (10)
已有條評論
新聞瀏覽排行