亚洲中文精品a∨在线,国产在线精品在线精品,国产亚洲欧美一区,欧美肉肉丝视频一区二区

您當(dāng)前位置: 唯學(xué)網(wǎng) » 統(tǒng)招研究生 » 輔導(dǎo)專題

考研高等數(shù)學(xué)重難點(diǎn)知識(shí)匯總

來(lái)源:唯學(xué)網(wǎng)•教育培訓(xùn)(slhrvoh.cn)  【唯學(xué)網(wǎng) • 中國(guó)教育電子商務(wù)平臺(tái)】 加入收藏

考研考試倒計(jì)時(shí)三十七天,這意味著考生們只有三十七天的備考時(shí)間了,然后,在除去考生打印準(zhǔn)考證及其他事情的時(shí)間,也許只剩下一個(gè)月的備考時(shí)間。為了幫助考生提高備考效率,唯學(xué)網(wǎng)小編為考生們整理了考研高數(shù)重難點(diǎn)知識(shí)匯總,希望對(duì)考生們備考有所幫助。

1、函數(shù)極限連續(xù)

①正確理解函數(shù)的概念,了解函數(shù)的奇偶性、單調(diào)性、周期性和有界性,理解復(fù)合函數(shù)、反函數(shù)及隱函數(shù)的概念。

②理解極限的概念,理解函數(shù)左、右極限的概念以及極限存在與左右極限之間的關(guān)系。掌握利用兩個(gè)重要極限求極限的方法。理解無(wú)窮小、無(wú)窮大以及無(wú)窮小階的概念,會(huì)用等價(jià)無(wú)窮小求極限。

③理解函數(shù)連續(xù)性的概念,會(huì)判別函數(shù)間斷點(diǎn)的類型。了解初等函數(shù)的連續(xù)性和閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(最大值、最小值定理和介值定理),并會(huì)應(yīng)用這些性質(zhì)。重點(diǎn)是數(shù)列極限與函數(shù)極限的概念,兩個(gè)重要的極限:limsinx/x=1,lim(1+1/x)=e,連續(xù)函數(shù)的概念及閉區(qū)間上連續(xù)函數(shù)的性質(zhì)。難點(diǎn)是分段函,復(fù)合函數(shù),極限的概念及用定義證明極限的等式。

2、一元函數(shù)微分學(xué)

①理解導(dǎo)數(shù)和微分的概念,導(dǎo)數(shù)的幾何意義,會(huì)求平面曲線的切線方程,理解函數(shù)可導(dǎo)性與連續(xù)性之間的關(guān)系。

②掌握導(dǎo)數(shù)的四則運(yùn)算法則和一階微分的形式不變性。了解高階導(dǎo)數(shù)的概念,會(huì)求簡(jiǎn)單函數(shù)的n階導(dǎo)數(shù),分段函數(shù)的一階、二階導(dǎo)數(shù)。會(huì)求隱函數(shù)和由參數(shù)方程所確定的函數(shù)的一階、二階導(dǎo)數(shù)及反函數(shù)的導(dǎo)數(shù)。

③理解并會(huì)用羅爾中值定理,拉格朗日中值定理,了解并會(huì)用柯西中值定理。

④理解函數(shù)極值的概念,掌握函數(shù)最大值和最小值的求法及簡(jiǎn)單應(yīng)用,會(huì)用導(dǎo)數(shù)判斷函數(shù)的凹凸性和拐點(diǎn),會(huì)求函數(shù)圖形水平鉛直和斜漸近線。

⑤了解曲率和曲率半徑的概念,會(huì)計(jì)算曲率和曲率半徑及兩曲線的交角。

⑥掌握用羅必塔法則求未定式極限的方法,重點(diǎn)是導(dǎo)數(shù)和微分的概念,平面曲線的切線和法線方程函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系,一階微分形式的不變性,分段函數(shù)的導(dǎo)數(shù)。羅必塔法則函數(shù)的極值和最大值、最小值的概念及其求法,函數(shù)的凹凸性判別和拐點(diǎn)的求法。難點(diǎn)是復(fù)合函數(shù)的求導(dǎo)法則隱函數(shù)以及參數(shù)方程所確定的函數(shù)的一階、二階導(dǎo)數(shù)的計(jì)算。

3、一元函數(shù)積分學(xué)

①理解原函數(shù)和不定積分和定積分的概念。

②掌握不定積分的基本公式,不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法和分部積分法。

③會(huì)求有理函數(shù)、三角函數(shù)和簡(jiǎn)單無(wú)理函數(shù)的積分。

④理解變上限積分定義的函數(shù),會(huì)求它的導(dǎo)數(shù),掌握牛頓萊布尼茲公式。

⑤了解廣義積分的概念并會(huì)計(jì)算廣義積分。

⑥掌握用定積分計(jì)算一些幾何量和物理量(平面圖形的面積、平面曲線的弧長(zhǎng)、旋轉(zhuǎn)體的體積及側(cè)面積、平行截面面積為已知的立體體積、變力作功、引力、壓力等。)重點(diǎn)是原函數(shù)與不定積分的概念及性質(zhì),基本積分公式及積分的換元法和分部積分法,定積分的性質(zhì)、計(jì)算及應(yīng)用。難點(diǎn)是第二類換元積分法,分部積分法。積分上限的函數(shù)及其導(dǎo)數(shù),定積分元素法及定積分的應(yīng)用。

4、向量代數(shù)與空間解析幾何

①理解向量的概念及其表示。

②掌握向量的運(yùn)算(線性運(yùn)算、數(shù)量積、向量積、混合積),了解兩個(gè)向量垂直、平行的條件;掌握單位向量、方向數(shù)與方向余弦、向量的坐標(biāo)表達(dá)式以及用坐標(biāo)表達(dá)式進(jìn)行向量運(yùn)算的方法。

③掌握平面方程和直線方程及其求法,會(huì)利用平面直線的相互關(guān)系解決有關(guān)問(wèn)題。

④理解曲面方程的概念,了解常用二次曲面的方程及其圖形,會(huì)求以坐標(biāo)軸為旋轉(zhuǎn)軸的旋轉(zhuǎn)曲面及母線平行于坐標(biāo)軸的柱面方程。

⑤了解空間曲線的參數(shù)方程和一般方程;了解空間曲線在坐標(biāo)平面上的投影,并會(huì)求其方程。

0% (0)
0% (10)
已有條評(píng)論
新聞瀏覽排行